Sodium balance, arterial pressure, and the role of the subfornical organ during chronic changes in dietary salt.
نویسندگان
چکیده
The subfornical organ (SFO), one of the brain circumventricular organs, is known to mediate some of the central effects of angiotensin II related to sodium and water homeostasis. Because angiotensin II levels are altered with changes in chronic dietary salt intake, we reasoned that the actions of angiotensin II at the SFO might be involved in the regulation of arterial pressure during long-term alterations in dietary salt. The present study was designed to test the hypothesis that long-term control of arterial pressure during chronic changes in dietary salt intake requires an intact SFO. Male Sprague-Dawley rats were randomly selected for electrolytic lesion (SFOx, n = 8) or sham (n = 9) operation of the SFO. After a 1-wk recovery period, rats were instrumented with radio-telemetric blood pressure transducers for continuous 24-h measurement of mean arterial pressure (MAP) and heart rate (HR) and then were placed individually in metabolic cages. After another 1 wk of recovery, the rats were subjected to a 49-day protocol as follows: 1) a 7-day control period (1.0% NaCl diet), 2) 14 days of high-salt (4.0% NaCl) diet, 3) 7 days of normal-salt (1.0% NaCl) diet, 4) 14 days of low-salt (0.1% NaCl) diet, and 5) 7 days of recovery (1.0% NaCl diet). There were no significant differences in MAP or HR between SFOx and sham-operated rats throughout the protocol. These results do not support the hypothesis that the SFO is necessary for regulation of arterial pressure during chronic changes in dietary salt. However, SFOx rats demonstrated significantly less cumulative sodium balance than sham-operated rats on days 2-6 of the high-salt diet period. These data suggest that the SFO is important in the regulation of sodium homeostasis during chronic changes in salt intake.
منابع مشابه
Angiotensin type 1a receptors in the subfornical organ are required for deoxycorticosterone acetate-salt hypertension.
Although elevated renin-angiotensin system activity and angiotensinergic signaling within the brain are required for hypertension, polydipsia, and increased metabolic rate induced by deoxycorticosterone acetate (DOCA)-salt, the contribution of specific receptor subtypes and brain nuclei mediating these responses remains poorly defined. We hypothesized that angiotensin type 1a receptors (AT(1a)R...
متن کاملRelation between sodium intake, renal function, and the regulation of arterial pressure.
The long-term regulation of arterial pressure requires the maintenance of a balance between sodium and water intake and sodium and water excretion. Normal salt and water balance leads to stable body fluid volumes and the maintenance of normal renal function is critical to establishing extracellular fluid volume homeostasis. This review focuses on the role of the kidney in the long-term control ...
متن کاملNervous System Ventral Lamina Terminalis Mediates Enhanced Cardiovascular Responses of Rostral Ventrolateral Medulla Neurons During Increased Dietary Salt
Increased dietary salt enhances sympathoexcitatory and sympathoinhibitory responses evoked from the rostral ventrolateral medulla (RVLM). The purpose of the present study was to determine whether neurons of the forebrain lamina terminalis (LT) mediated these changes in the RVLM. Male Sprague-Dawley rats with and without LT lesions were fed normal chow and given access to water or 0.9% NaCl for ...
متن کاملVentral lamina terminalis mediates enhanced cardiovascular responses of rostral ventrolateral medulla neurons during increased dietary salt.
Increased dietary salt enhances sympathoexcitatory and sympathoinhibitory responses evoked from the rostral ventrolateral medulla (RVLM). The purpose of the present study was to determine whether neurons of the forebrain lamina terminalis (LT) mediated these changes in the RVLM. Male Sprague-Dawley rats with and without LT lesions were fed normal chow and given access to water or 0.9% NaCl for ...
متن کاملBRIEF COMMUNICATIONS Subfornical Organ Does It Protect against Angiotensin Il-Induced Hypertension in the Rat?
The purpose of this study was to examine the contribution of the subfornical organ to the chronic hypertension produced by intravenous angiotensin II infusion in rats. Male rats were instrumented with permanent arterial and venous catheters and housed in metabolism cages for daily measurement of arterial pressure, heart rate, water intake, water balance, and urinary electrolyte excretion. Angio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 289 1 شماره
صفحات -
تاریخ انتشار 2005